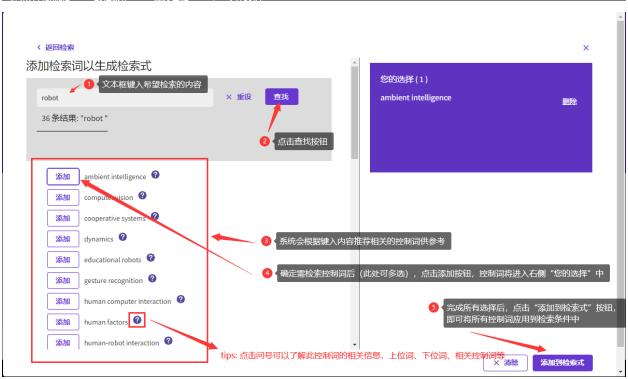
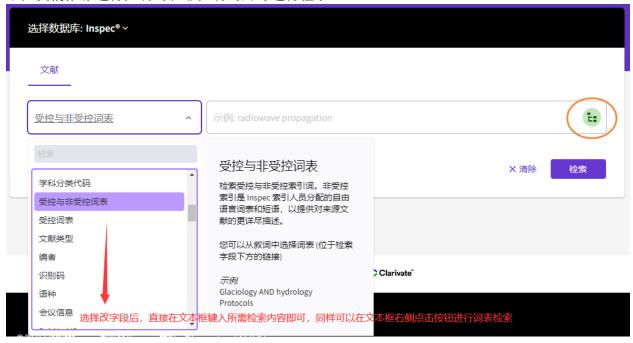

Inspec 数据库是由英国工程技术学会(IET, the Institution of Engineering and Technology)出版的二次文献数据库,是理工学科最重要和使用最为频繁的数据库之一,著名的"科技文摘"(SA, Science Abstract),始于 1898 年,覆盖了物理及工程领域中的众多学科。

Inspec 数据库覆盖物理、电子与电气工程、计算机与控制工程、生产和制造工程等领域,同时也涉及跨学科领域,包括材料科学,海洋工程,核工程,天体物理学学、生物医学工程、交通运输工程学等。目前用户可以检索到自 1969 年以来的所有摘要数据,包括全球 100 多个国家出版的 4500 多种科技期刊、3000 多种会议论文集以及大量的专著、专利和论文。Inspec 数据库目前收录 2000 多万条的文献,并以每周近 2 万条文献的速度增加。

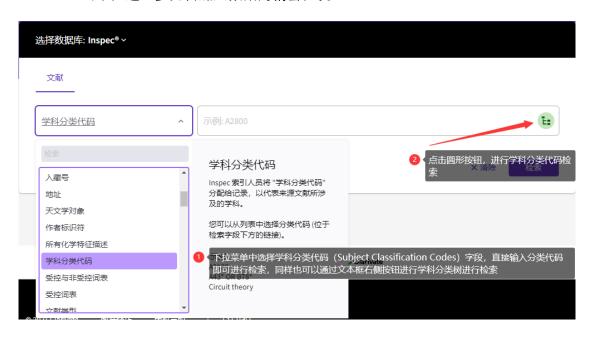
首先,要在 Web of Science 平台使用全部 Inspec 功能,一定要先通过数据库选择界面进入 Inspec 模块,如未选择进入专有模块,部分独特功能(化工检索、数值检索等)将无法使用

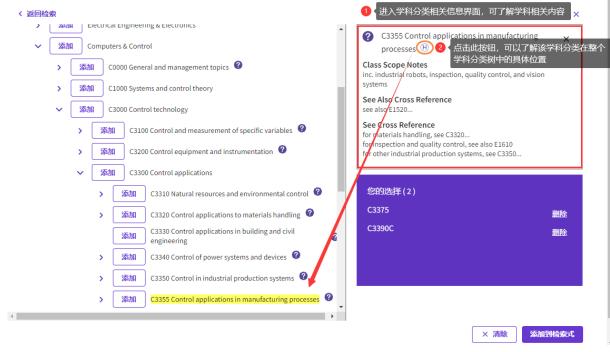


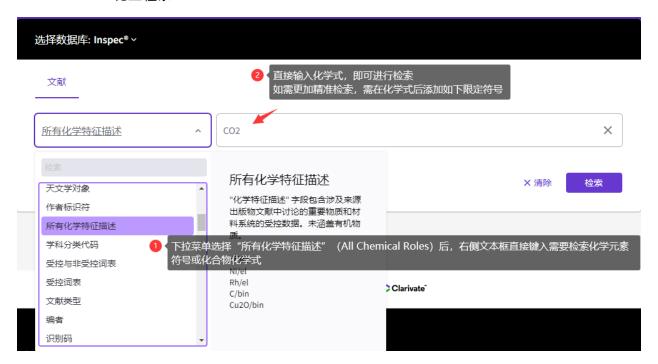
接下来针对数据库中的核心底层数据字段进行一一介绍:


1. 控制词和非控制词

控制词是一种对知识加以组织整理,以便后续进行检索的手段。受控词表方案强制要求采用预先确定且经过权威认定的术语,而这些术语是由词表的设计者原先选定的。相比之下,自然语言词表并没有施加此类限制。受控词表解决的是有关同形异义词、同义词和多义词的问题,简而言之,受控词表有助于减少正常人类语言内在所固有的歧义问题,从而保证一致性。在自然语言当中,同一概念可以有多种不同的名称。




非控制词是相对于控制词的一个概念,由于控制词表是一个比较稳定的专业词表,其每年进行更新一次,所以为了避免一些新兴概念或重要理念无法被揭示,Inspec 中特地推出了非控制词这个概念,非控制词每周进行更新,保证数据检索中的全面覆盖。在检索中,一般情况下,我们推荐进行控制词和非控制词同时进行检索:


Inspec 目前已包含控制词共计超过 1 万个,在专业检索中,可以帮助用户实现快速 精准揭示相关数字资源。 2. 学科分类代码: 一直以来, Inspec 收录四大学科领域, 包括物理(工程基础学科)、电子电气工程、生产制造工程和计算控制工程, 在这四大学科当中, Inspec 将其细分为 3600 个左右的精准分类, 同时设置五层的学科分级, 在这个字段维度当中, 进一步完善底层数据的精密程度:

1987 年,针对 Inspec 所有收录记录,数据库推出了非常重要的两项功能:化工检索及数值检索,这两项功能可以将底层数据与实际应用、应用背景完美结合,通过化学元素、化学式、物理量、精确数值或范围检索符合检索条件的相关文献,最大程度减少检索及排除噪音时所耗费的时间。

3. 化工检索:

• 化合物成分采用如下标注方法

Element(/el) 单一元素

Binary(/bin) 双元素

System(/ss) 三个以上元素

M料特殊用途标注方法

Dopant (/dop) 掺杂物(添加物)

Interface (/int) 界面物质

Surface/Substrate (/sur) 表面物质 Adsorbate (/ads) 吸附物 选择数据库: Inspec® >

可以使检索结果更加精准,/
BIN表示前述化学式只包含两种化学元素

所有化学特征描述

+ 添加行

+ 添加日期范围

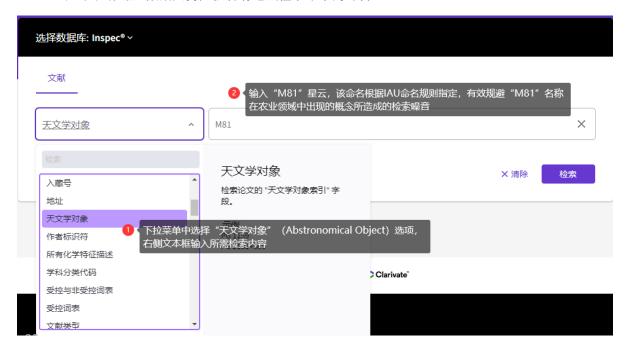
高级检索

4. 数值检索:

Inspec 将所有收录数据进行整理,在底层数据中编加文章中涉及的重要数值数据信息,截止目前,Inspec 已经覆盖的物理量有 47 种,同时 Inspec 将每种物理量的描述单位也进行了统一,避免检索时,由于单位不统一造成的检索漏洞,如温度单位包括摄氏度、华氏度、开尔文等等,Inspec 可以进行统一单位进行检索查询:

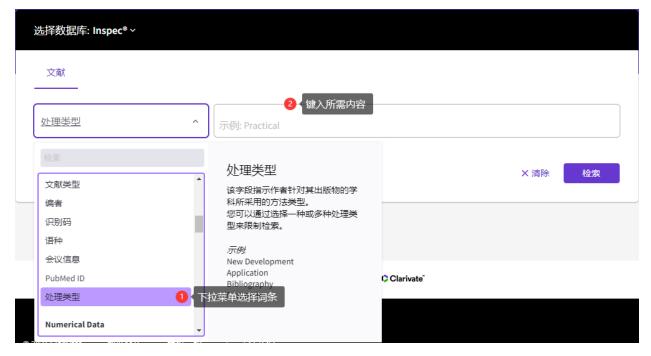
数值检索物理量(Numerical Data List)				
age (year)	current (ampere)	galactic distance (parsec)	pressure (pascal)	storage capacity (bit)
altitude (meter)	depth (meter)	geocentric distance (meter)	printer speed (characters per second)	temperature (kelvin)
apparent power (volt- amp)	distance (meter)	heliocentric distance (astronomical unit)	radiation absorbed dose (gray)	time (second)
bandwidth (hertz)	efficiency (percent)	loss (decibel)	radiation dose equivalent (sievert)	velocity (meters per second)
bit rate (bytes per second)	electrical conductivity (siemen per meter)	magnetic flux density (tesla)	radiation exposure (coulomb per kilogram)	voltage (volt)
byte rate (bytes per second)	electrical resistivity (ohm meter)	mass (kilogram)	radioactivity (becquerel)	wavelength (meter)
capacitance (farad)	electron volt energy (electron volt)	memory size (byte)	reactive power (volt- amp reactive)	word length (bit)
computer execution rate (instructions per second)	energy (joule)	noise figure (decibel)	resistance (ohm)	
computer speed (FLOPS)	frequency (hertz)	picture size (picture element)	size (meter)	
conductance (siemen)	gain (decibel)	power (watt)	stellar mass (solar mass)	

数值检索功能使用:

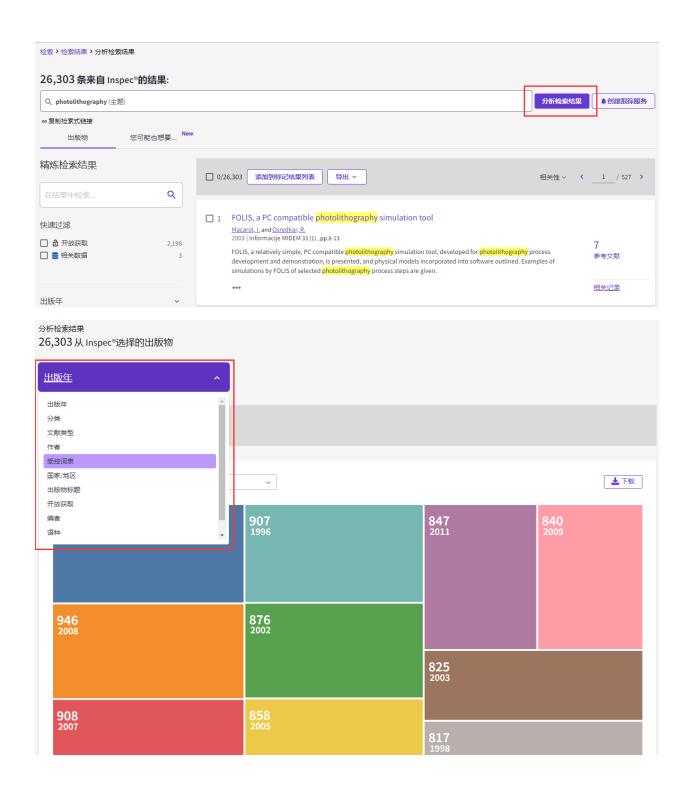


*数值检索中的数值也可以通过科学计数法进行描述,依照用户不同使用习惯自主选择。

5. 天体物理识别号:


根据国际天文学联合会 (International Astronomical Union, IAU) 的命名标准,在收录文章中编加相应的底层数据,在此字段中进行检索时,能够通过不同的天体命名,有效发现所有相关的文献,有效规避由于天体命名复杂性所造成的检索噪音:

• 如: M81 旋涡星系, 地球天空中最明亮的星系之一, 而 M81-E 是一种全作物生物乙醇生产品种, 如果没有底层数据支持, 很容易造成检索带来的噪音



6. 处理类型(Treatment Type):Inspec 文献类型分类描述

- Applications (a): 源文件描述仪器、设备等的使用或实施; 涉及应用。
- Bibliography or Literature Survey (b): 涉及 50 种或更多参考文献
- Economic Aspects or Market Survey (e): 源文件涉及经济或商业方面,如成本、定价、市场 预测等
- General or Review Article (g): 对主题的总体看法,一般方法、最先进的评论、概述等。对于想要对不熟悉主题领域进行概述的研究人员很有用。
- New Developments (n): 专利意义上的任何新的或新颖的内容
- Practical Aspects (p): 实际使用, 动手操作
- Product Review (r): Practical 的一个子集,于 1985 年推出,包括产品比较表和指南
- Theoretical Aspects or Mathematical Treatment (t): 分析一组事实及其相互关系
- Experimental Aspects (x): 涉及测试、试验、暂定程序或政策的内容

除以上独特检索字段以外,Inspec 数据库中其余字段内容均可直接进行相应的文本检索,同时检索结果支持 Web of Science 平台对检索结果进行分析功能,从各种不同维度,对检索结果进行直观揭示。

在进行文献揭示的过程中,Inspec 可以通过其详细的人工底层标引数据(控制词、非控制词、五层学科分类、天体物理识别号、IPC 国际专利号、化学索引、数值索引、文章处理代码等字段)进行研究条件约束,在设定检索条件的过程中,一步步接近真正需要的科技文献,从而提高文献检索效率,节约宝贵的科研时间。